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ABSTRACT   

 
While Lanchester’s equations are commonly used as the basis for force-on-force combat models, it 
is important to remember that Lanchester’s Equations are not a model of combat, only a model for 
combat attrition. There have been numerous attempts to compare historical combat data with the 
behaviour expected from Lanchester's Equations. The present work extends this comparison 
between historical battle data with behaviour expected from a battle where attrition is described 
by Lanchester’s Equations. It examines how analyses of historical battles can contribute to the 
development of models of combat and hence our understanding of combat in addition to the 
processes used in the creation of databases of historical battle results. The historical data is 
compared against the expectations of both the deterministic and stochastic forms of Lanchester’s 
Square Law. 
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Executive Summary    
 
Lanchester’s equations are commonly used as the basis for force-on-force combat models, 
even if only as a metamodel for a more complex combat model. It is important to 
remember that Lanchester’s Equations are not a model of combat, only a model for combat 
attrition. The equations alone, therefore, cannot be expected to capture other effects such 
as the movement of engaged forces. There have been numerous attempts to compare 
historical combat data with the behaviour expected from combat models. To validate 
differential models of attrition, force and casualty numbers for both sides intermediate to 
the starting and finishing values are required. That level of detail is rarely available and 
often does not exist. An alternate approach using only the initial and final values of 
engaged force’s strength has been tried previously. However, Lanchester’s Equations 
describe the behaviour of a single system in time while the historical databases contain 
information about an ensemble of battles, each potentially with different values of attrition 
rate coefficients. The issue of why the results from such an ensemble follow the behaviour 
expected from Lanchester’s Equations has never been adequately explored or explained. 
 
The present work extends this comparison between historical battle data with behaviour 
expected from a battle where attrition is described by Lanchester’s Equations. It examines 
how analyses of historical battles can contribute to the development of models of combat 
and hence our understanding of combat in addition to consideration of the processes that 
are used in the creation of databases of historical battle results. The implications of those 
processes on the limitations of this form of analysis, the constraints they impose and the 
resulting inherent biases are discussed, as well as methods that can be used to quantify 
and mitigate their effects. 
 
The historical data is compared against the expectations of both the deterministic and 
stochastic forms of Lanchester’s Square Law. However, it should be noted that 
examination of Lanchester’s stochastic differential equation was not intended to be 
comprehensive or rigorous. Both have been covered extensively elsewhere, including by 
the author, and the present work contains numerous references to more authoritive works 
on these subjects for the interested reader. 
 
Finally, evidence for considering battle as a particular type of complex adaptive system, 
one that involves co-evolution and scale free behaviours, is examined. It is proposed that 
this may be responsible for the unexpected observation that the behaviour of several 
parameters used to characterise combat is the same for both an ensemble of different 
battles and for the evolution of a single battle. 
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1. Introduction  

During the First World War F. W. Lanchester described one of the simplest, and most 
enduring, mathematical attrition models of force-on-force combat [1]. He proposed two 
systems of equations, depending on whether the fighting was “collective” or not. Collective 
combat between an attacking side of strength x and a defending side of strength y being 
described by the equations: 
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The quadratic form of which results in this system of equations being known as the 
Lanchester Square Law. Individual combat on the other hand is described by equations that 
produce an equation of state in which the force strengths are related linearly. The question of 
how each side’s strength is to be measured is deferred until the instantiation of a historical 
battle database is considered. 
 
The assumption of “collective” combat is unlikely to apply throughout an entire battle and 
hence real world attrition results from a combination of collective and individual combats. This 
possibility has long been recognised and produced many attempts to generalise Lanchester’s 
system of equations to better represent actual combat results.  
 
Lanchester’s model was developed as a description of air combat, in which each side was 
essentially composed of a single type of combat element. Force strength was then a simple 
matter of counting the number of aircraft in a side. Modern applications of Lanchester’s ideas 
to land combat run into the problem that each side consists of a number of types of combat 
element (infantry, artillery, tanks etc.) each of which interacts differently with each of the 
opposing sides’ combat types. The development of heterogeneous combat models is central to 
most current military combat simulations [2]. It is important to remember that Lanchester’s 
Equations are not a model of combat, only a model for combat attrition. The equations alone, 
therefore, cannot be expected to capture other effects such as the movement of engaged forces. 
This is frequently forgotten, as by Epstein [3]. 
 
There have been numerous attempts to compare historical combat data with the behaviour 
expected from Lanchester’s Equations, including the work of Helmbold [4] and Hartley [5]. 
Hartley also includes a comprehensive review of the effort to validate combat attrition laws 
using historical analysis. Recent work by the author has also investigated the ability of 
Lanchester’s Equations to describe patterns observed in the casualty statistics using Hartley’s 
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database of historical battles. This includes an examination of the inclusion of a fractal model 
of spatial dispersion on casualty values [6] and the distribution of casualties when 
Lanchester’s Equations are modelled as stochastic processes [7]. 
 
1.1 Report Overview 

The present work seeks to extend this comparison between historical battle data with 
behaviour expected from a battle where attrition is described by Lanchester’s Equations. It 
begins with an examination of how analyses of historical battles can contribute to the 
development of models of combat and hence our understanding of combat. This is followed 
by consideration of the processes that are used in the creation of databases of historical battle 
results. The implications of those processes on the limitations of this form of analysis, the 
constraints they impose and the resulting inherent biases are discussed, as well as methods 
that can be used to quantify and mitigate their effects. This is followed by a brief review of 
how historical battle results have been and may be used to validate proposed attrition 
relationships, including examination of the presence of bias in the database using a sub-
sampling approach. 
 
Next, the author’s previous work examining Lanchester’s Equations modelled as stochastic 
processes is revisited and extended. However, it should be noted that examination of 
Lanchester’s Equations and stochastic differential equation presented in the present work is 
not intended to be comprehensive, rigorous or complete. Both have been covered extensively 
elsewhere, including by the author, and the present work contains numerous references to 
more authorative works on these subjects for the interested reader or reader unfamiliar with 
the use of Lanchester’s Equations. 
 
The author’s previous analyses of Lanchester’s Equations using historical battle data is then 
revisited, using the larger database developed for the present work. Finally, evidence for 
considering battle as a particular type of complex adaptive system, one that involves co-
evolution and scale free behaviours, is examined. It is proposed that this may be responsible 
for the unexpected observation that the behaviour of several key parameters used to 
characterise combat is the same for both an ensemble of different battles and for the evolution 
of a single battle. 
 
 

2. Modelling Paradigms and their Application in 
Combat Modelling 

At its most basic, a model refers to a conceptual representation of some aspect of reality. 
Models are used when they are easier to understand than those aspects of reality they 
represent. Complex phenomena often require complex models if the model’s behaviour is to 
reproduce that of the real world. However, while such models produce reasonable agreement 
with real world results, they are less often useful in understanding the functional dependence 
of the modelled quantity on the input parameters. In such cases it is useful to develop a 
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(simpler) model of that model which, although providing lower fidelity results, is better at 
explaining the causes of those results [2]. 
 
Models can be classified into three descriptive types [8], according to the degree of abstraction 
required: 
 

 iconic models such as drawings or miniatures, 
 analogue models in which other physical relationships represent the relationships 

under study, and  
 symbolic models where abstract symbols or quantities are used to describe the real 

world. 
 
Symbolic models are in turn divided into conceptual and mathematical models. Conceptual 
models include descriptions, plans and diagrams including charts. Mathematical models 
represent reality through quantitative relationships. They are further divided into static or 
dynamic depending on whether the model allows its variables to change over time or not. 
Mathematical models can also be classified as analytic or simulation depending on whether an 
exact closed form solution exists or whether a related sequence of models are used to 
converge to a solution for a complex problem. Simulation models are also divided into 
deterministic and stochastic models depending on whether uncertainty and risk is explicitly 
represented. 
 
As usual a trade-off is involved when deciding which type of model to develop for a 
particular situation [9]. Simulation models capture real world complications better than 
analytic models. Analytic models can typically be solved under restricted conditions of 
population size or time, and are generally poor at describing transient behaviour. The most 
useful analytic models generally describe the real world using simple functional relationships. 
 
There are two basic paradigms for developing mathematical models, including models of 
combat. 
 
2.1 Reductionist 

The reductionist approach attempts to describe a complex system by reducing the system to 
the interactions of its parts [10]. The component parts may also be reduced to simpler or more 
fundamental objects and the interactions between them. A complex system is viewed as no 
more than “the sum of its parts” in which all phenomena can be explained in terms of other, 
more fundamental, phenomena. Reductionism does not exclude the possibility of “emergent 
behaviour”1, but does believe that such behaviour can be explained in terms of the 
phenomena from which they emerge. This paradigm is attractive to model developers as a 
complex model is obtained simply through the aggregation of simpler models of its 
fundamental behaviours. 
 

                                                      
1 In the present work emergent behaviour is the way complex systems and patterns occur from many relatively 
simple interactions. 
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Taylor [11] has produced the most readily accessible and comprehensive reductionist treatise 
on force-on-force level Lanchester type models of attrition. It includes a theoretical treatment 
of differential equation models of attrition in force-on-force combat operations, providing 
both an introduction to and current overview of such models as well as a comprehensive and 
in-depth treatment of them. Both deterministic as well as stochastic models are considered. 
However, the resulting simplicity of a force-on-force level model limits their practical 
application. 
 
Taylor goes on to identify which elements of a Lanchester type force-on-force level attrition 
model could be replaced with models composed of more fundamental objects in accord with 
the reductionist paradigm. These include attrition rate coefficients and force composition 
(homogenous versus heterogeneous), but does not explore how this might be achieved in 
practice. 
 
The price of continuing the reductionist agenda and including models of component 
phenomena, is that the analytic approach to exploring the system properties has proven to 
have limited application. A simulation based approach is generally used instead. 
 
The origins of quantitative models of combat attrition lie in the early 20th century among 
several authors working independently. Fowler [12] reviews the pioneering work by Chase, 
Fiske, Lanchester and Osipov, giving mathematical descriptions of their models. All of which 
can be regarded as variations of the same basic concepts and can be treated as particular cases 
of the generalised Lanchester Equations. 
 
Fowler develops a detailed mathematical examination of the solutions to these equations 
using several different approaches, emphasising a number of particular combat types 
including both the linear and square law forms of the Lanchester equations. In addition to 
examination of Lanchester’s coupled differential equations, Fowler includes an examination of 
the assumptions that underpin them and their solutions. 
 
Fowler also attempts to combine historical analysis with the mathematical analysis of combat 
models. In common with other authors, such as Helmbold [4], he does not consider why the 
behaviour of data from a collection of unrelated battles can often be described using 
relationships developed from a model of the evolution of a single battle. Although the 
functional relationships between initial and final states are the same for such a collection of 
battles, their different and unrelated controlling parameters (such as attrition ratio) should 
have unconstrained values resulting in a range of final state values that obscure the functional 
relationships (as noted by Hartley [5]). Fowler’s other comments of the use of historical 
analysis give the impression that he does not value its contribution highly, nor indeed any 
analysis that does not proceed from first principles. The work of Dupuy [13], while noted for 
its aesthetic form, is dismissed as merely empirical and lacking theoretical foundation. While a 
number of these criticisms are justified, the contribution that can be made by historical 
analysis and empirical studies in general are a subject of the present work. 
 
In his pursuit of a description of combat attrition from first principles, most of Fowler’s work 
consists of an examination of the derivation of values for the attrition coefficients that appear 
in Lanchester’s Equations. Evaluation of these coefficients is one of the issues previously 
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identified by Taylor [11] as requiring further investigation. As part of this examination Fowler 
undertakes a comprehensive study of the wide range of factors that contribute to the 
evaluation of an attrition coefficient, including Bonder-Farrell theory of attrition rate 
coefficients, the theory of kill chains and heterogeneous engagements. The examination of 
stochastic behaviour of Lanchester’s Equations, using the Fokker Planck equation, is less 
concerned with studying variability in combat outcomes than in justifying the standard 
equilibrium approximation whereby the variables in the equations are replaced by their 
expectation values. His findings are consistent with the application of the “law of large 
numbers”, supporting a conclusion that Lanchester’s Equations are more applicable for larger 
systems. The sensitivity of the system’s evolution to its initial conditions is also explored. In 
addition to examining the equations governing the evolution of the expectation values for the 
system’s variables, Fowler also developed equations governing the evolution of the variances 
and covariances of those variables. Noting the lack of correlation between force strength and 
combat success, he has advanced the idea that each side’s perception of its chance for success 
is related to the behaviour of the system’s variances and covariances. 
 
The aggregation of one-to-one engagements into many on many engagements is extensively 
covered, again from first principles, starting with detection and tracking theory and considers 
time and range dependent effects on the probability of killing a target. The influence of 
weather, topology and weapon performance (ballistic or guided) is also included in his 
treatment of the determination of aggregate attrition coefficients, along with command and 
control problems in distributing targets among multiple firers. 
 
Fowler’s work is probably the most comprehensive review of combat attrition modelling 
presently available at the unclassified level and is a good guide to the complexity of large 
aggregate military models that have been used such as the USAF’s Thunder and its 
replacements. However, the detailed scope of what is required by such a model also makes 
clear why such models fail to provide understanding. It is very difficult to relate trends in the 
model’s outcome to causes, resulting in simpler, more empirical models such as Lanchester’s 
Equations, retaining considerable utility. 
 
2.2 Holistic 

Phenomena such as emergence are believed to impose limits for the application of 
reductionism. In linear systems, the interactions between all components is obtained from the 
superposition of all possible pairwise component interactions. Nonlinearity may produce 
additional effects, not predicted by the properties of individual components or their simple 
interactions, in systems formed from large numbers of interacting components. Therefore at 
each stage in the aggregation of components to produce objects on a higher level of 
organisation, new concepts and generalisations must be added that do not arise from the 
properties of its components [14]. 
 
The holistic approach is the idea that all of the properties of a complex system cannot be 
explained by summing the behaviour of its component parts alone [15]. In contrast to the 
reductionist program above, aggregating a system’s component parts is insufficient to provide 
a realistic description and requires additional phenomena or interactions which cannot be 
deduced from them in order to produce an accurate description. This model making 
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paradigm requires the developers to determine whether additional constructs are required by 
the model at each level of aggregation of its component parts. The reductionist viewpoint 
regards these additional phenomena as empirical and lacking rigorous justification. 
 
Dupuy’s Quantified Judgement Model (QJM) [13] typifies holistic combat models. It is an 
empirical expression of Clausewitz’s “Law of Numbers”, in which historical analysis of combat 
outcomes is used to determine approximate numerical values for its parameters. It is an 
example of the force scoring approaches reviewed by Jaiswal [16]. The combat power of a side 
is described in terms of its theoretical force strength and parameters describing the impact of 
operational factors. The force strength is a weighted sum of the lethality (killing power) of the 
elements making up that force. The weighting takes into account the impact of weather, 
terrain and the spatial dispersion of the force. Battle outcomes depend on the combat power of 
the two sides. The principal criticisms of the QJM approach are its complexity, often 
contradictory formulation, reliance on military judgement to determine values for certain 
parameters and its lack of a scientifically rigorous foundation [12]. However, this appears to 
be little more than the reductionist view of the holistic approach. 
 
 

3. The Role of Historical Analyses 

Both the reductionist and holistic approaches require data analysis. The main difference 
between them is that the reductionist approach only uses such analysis to determine the 
properties of the most basic, fundamental, objects in its hierarchical system deconstruction. 
These properties constitute the “first principles” from which all other behaviours can be 
developed. The data used at this level of analysis is generally at the scale of individual 
performance and interactions, which as a result does not include the effects of any collective 
behaviour. 
 
In addition to making use of this data analysis of the basic objects, the holistic approach looks 
for additional properties and interactions that arise from collective behaviour at each level of 
object aggregation. This is obtained by additional data analysis of larger scale, collective, 
interactions including up to entire battles. Such data cannot in general be produced through 
controlled experiments or exercises and must be obtained from the historical record. This use 
of historical data analysis in the formulation of combat models is a major difference between 
these two approaches. 
 
There have been numerous attempts to compare historical combat data with the behaviour 
expected from combat models, including the work of Helmbold [4] and Hartley [5]. Hartley 
also includes a comprehensive review of the effort to validate combat attrition laws using 
historical analysis. In contrast to those approaches, Hartley emphasises development of a 
combat model, including attrition, directly from historical battle data. Such analysis identifies 
relationships between many combat factors including force size, posture, casualties, surprise 
and duration. Mathematical expressions of these relationships are developed using standard 
regression analysis techniques and significance tests. Key casualty relationships are shown to 
be consistent with the expectations of the mixed Lanchester attrition equations. 
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To validate differential models of attrition, force and casualty numbers for both sides 
intermediate to the starting and finishing values are required. That level of detail is rarely 
available and often does not exist. Hartley’s approach uses only initial and final values of 
engaged force strengths. A number of such compilations exist, which have been aggregated 
by Hartley. The component databases were created by different workers for a variety of 
different purposes. The potential for bias and error in the data is carefully considered, 
especially for battles prior to the 19th Century. Hartley argues that this database constitutes a 
random sample, because the individual datasets comprising the database were independently 
derived. While such aggregation will improve the accuracy of statistical estimators of dataset 
properties, the conclusion that while the database is not a true random sample it can be 
treated as if it were effectively random, requires further justification. It is difficult to avoid the 
conclusion that the database is little more than an aggregate of accidental sampling databases. 
 
Lanchester’s Equations describe the behaviour of a single system in time. However, the 
historical databases contain information about an ensemble of battles, each potentially with 
different values of attrition rate coefficients a and b. Should the results from such an ensemble 
follow the behaviour expected of a single system? Hartley has examined this issue at length. 
He considered several hypotheses, rejecting all save the conclusion that the relationship 
between the data from an ensemble of different battles was a direct consequence of the 
equations governing the attrition process. In other words, the behaviour governing an 
individual battle was reflected in the behaviour of an ensemble of battles. The bulk of 
Hartley’s work is concerned with the development and examination of a model constructed 
from this historical analysis. 
 
3.1 Interpreting the Historical Record 

Despite the large number of recorded battles throughout history, the number with usable data 
is small. Any compilation of battle data, being a subset of all battles, constitutes a sample. A 
useful database will have a sample of battle data that is representative of patterns observed in 
the population of all battles. There are many issues which must be considered when 
attempting to use historical data, including: 
 

 potential bias in narrative accounts of the battle due to most accounts being written by 
the victor or for propaganda purposes, 

 many reported results are qualitative or approximate, 
 many reported results for the same battle disagree, including dispute over which side 

won, 
 when determining force strengths should support or service personnel be included, 
 when determining casualties should prisoners be included, 
 how should force strength be obtained from numbers of participants, should some 

form of force scoring such as the QJM be used, 
 how should the effect of leadership, initiative, surprise, terrain and weather be 

included, 
 how is the boundary of a battle defined, should strategic airpower or naval gunfire 

support be included, 
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 how should the effect of reserves be included, should the availability of uncommitted 
forces be included, 

 should a battle be considered as a single event, or does it more closely resemble a 
related series of events (phases) separated in space and time. 

 
This last point is critical. Most battles can be regarded as a series of events that occur both 
consecutively and concurrently. Both sides may be the attacker in different phases of the same 
battle, leading to dispute over who is the attacker. Each phase should strictly be considered as 
a separate battle, as originally intended by Lanchester [1]. However, under many conditions 
they can be aggregated into a single battle. How a large battle is segmented into smaller 
actions can substantially affect its analysis. 
 
Most authors using historical data have attempted to address some of these issues [4, 5], 
especially questions of how to determine force strength and casualties. However there 
remains a question regarding the accuracy of much of the original reporting, especially for 
battles prior to the 19th Century. Because different methods and standards may have been 
used in recording each battle, the data will always contain inconsistencies and be subjective to 
some extent. But this is also true of current military activities and must be accepted as 
representing a limit on the accuracy of any analysis using real world data. These difficulties 
have left many in the field doubtful over the utility of historical analysis [12], as no universal 
solution exists to these problems. Accepting that such problems cannot be entirely eliminated, 
an approach to mitigate their impact will be considered in a following section. 
 
3.2 Attrition Model Validation 

As already mentioned, to validate differential models of attrition such as Lanchester’s 
Equations, force and casualty numbers for both sides at times intermediate to the starting and 
finishing times are required. That level of detail is rarely available and often does not exist. 
The author is aware of four studies: Engel’s [17] pioneering work on the Iwo Jima campaign, 
Busse’s work on the Inchon campaign [18], Bracken’s study of the Ardennes campaign [19] 
and Lucas’s examination of the battle of Kursk [20]. As noted previously, Lanchester’s 
Equations are not a model of combat, only a model for combat attrition. Each of these studies 
had first to segment the data, using narrative accounts of the battle, and extract those changes 
that were the result of attrition from all other changes. How a large battle is segmented into 
smaller actions can substantially affect its analysis. Each analysis made decisions regarding 
the inclusion of non-combat personnel, made more difficult by the combat effect of external 
participants such as US Naval gunfire at Iwo Jima and Inchon. The studies differed on the 
consistency of the historical data with the expectation from Lanchester’s Equations. The Iwo 
Jima analysis found broad consistency, while the Kursk analysis found that the segmentation 
into phases was more important in explaining the observed casualty patterns. Much of the 
problem is due to the lack of sufficient data for both sides intermediate force and casualty 
values. 
 
The four studies above each contained from 20 to 40 time correlated records of force strength 
and casualties for both sides. This sequence of values had to be segmented into smaller 
sequences due to the application of external variables such as the arrival of reinforcements. 
This resulted in sequences of related events available for analysis generally being much 
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smaller, and only rarely consisting of as many as 20 events. Determination of the form of the 
controlling attrition relationship is then made using regression analysis. However, studies of 
the relationship between sample size and precision in such analyses [21] show that 10 times as 
many observations are required as there are parameters in the regression model to obtain a 90 
% confidence in the prediction of their values. Lanchester’s Equations have 2 such parameters. 
The uncertainty arising from the use of the short data sequences available in the historical 
record is a major factor in the poor discrimination between competing attrition models 
reported in these studies. 
 
3.3 Analysis for Ensembles of Battles 

Lanchester’s attrition equations describe the behaviour of a single system in time. However, as 
can be seen from Equation 2, the initial and final states of a battle are related. Hence a 
database of such information from a collection of historical battles does contain information 
about the attrition processes that govern their evolution. But, each battle in such compilations 
potentially has different values of the attrition rate coefficients a and b. Consequently, 
examination of the dependence of the left hand side of Equation 1 should not yield any 
interesting functional dependence, as the attrition ratio is independent of initial or final state 
values. This is not what is observed when the data is examined, as originally reported by 
Helmbold [4]. Hartley’s data compilation [5] is shown in Figure 1 plotting the natural 
logarithm (ln) of the left hand side of Equation 2 (known as the Helmbold Ratio) against the ln 
of the initial force ratio. 
 
The colour of each data point indicates the identity of the winning side. A more detailed 
examination of Hartley’s data analysis follows later. While the data exhibits considerable 
scatter, a clear trend is apparent. 
 
An early explanation for this behaviour was found if the attrition coefficients are not constants 
but depend on the force ratio. Such behaviour can be explained in terms of battlefield 
congestion preventing a side from making full use of its available forces and thus reducing the 
effective attrition rate against its opponent. Lanchester’s Equations, modified to include the 
effect of “diminished marginal returns”, are given in Equation 3: 
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Figure 1: Helmbold’s Relationship, from Hartley [5]. 

If the attrition functions f( ) and g( ) are simple power laws, as shown in the right hand 
expressions of Equation 3, the resulting equation of state (also known as the Helmbold 
Equation) [4] is shown in Equation 4. This equation is consistent with the equation of state in 
Equation 2; subject to the additional assumption above that “diminished marginal returns” 
constrain the values that the attrition coefficients a and b can take. This equation can also be 
regarded as a statement of that constraint. 
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Bearing in mind that equation 4 describes the evolution of a single battle, the similar 
behaviour shown by the data describing the ensemble of battles (Figure 1) was considered 
remarkable [5]. 
 
Previous work by the author [6] has shown that this equation of state also results from 
Lanchester’s original equations, when the spatial distribution of each side’s forces is modelled 
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stochastically where the probability is fractally distributed (power law). Both derivations are 
based on the same principle, a side’s spatial distribution limits its ability to target enemy 
forces thus reducing its effective attrition coefficient which then depends on the force ratio. 
 
Helmbold’s pioneering work on historical battle analysis [4] made the assumption that the 
attrition coefficients were approximately the same for all battles. Hartley [5] sought to relax 
this assumption and has examined this issue at length. He considered several hypotheses 
rejecting all save the conclusion, albeit more empirical than rigorous, that the relationship 
between the data from an ensemble of different battles was a direct consequence of the form 
of the equations governing the attrition process of a single battle. In other words, the 
behaviour governing an individual battle was reflected in the behaviour of an ensemble of 
battles. Indeed, Helmbold’s original work on the validation of Lanchester’s Equations using 
historical data found this applies to a number of different parameters including the defender’s 
advantage. 
 
Further consideration as to why this similarity of behaviour exists will be deferred until 
Section 8. The present work will accept that the observed behaviour of such an ensemble of 
battles will follow the behaviour expected of that parameter during the course of a single 
battle. 
 
3.4 Issues in Database Development 

The fidelity of historical analysis is dependent on choice of an appropriate data sample. If the 
sample is representative of the population, parameter estimators derived from the sample will 
also be representative of the value of that parameter in the population, within error limits 
determined by sample selection and size [22]. How the sample is obtained has considerable 
influence on how representative of the population it is, with random sampling techniques 
considered the least influenced by bias and error. 
 
A sample of objects from a population is random if all the members of the population have an 
equal chance of appearing in the sample. This applies to all members of the population, 
exceptional as well as typical members. Otherwise a correlation between the quantity being 
measured and probability of appearing in the sample can result in the value of the 
parameter’s estimator being very different from the value of that parameter in the population. 
 
When sampling a heterogeneous population the precision achieved can be increased and the 
risk of bias reduced by dividing the population into sections, each relatively homogeneous, 
and sampling each section (or stratum) separately. Estimates obtained for each stratum can 
then be combined to give the estimate for the whole population. If entire groups of a 
heterogeneous population are excluded from a sample, there are no adjustments that can 
produce representative estimates of the entire population. However, if some groups are 
under-represented and the degree of under representation can be quantified, then sample 
weights can compensate for the bias. 
 
When the population being sampled is extensive or complex, the practical problems in taking 
a simple random sample are great, and the time taken for even a small sample may be large. 
The difficulty in obtaining a sample of a given size may be greatly reduced by carrying out the 
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sampling in two stages. First the complete population may be divided into a number of 
distinct primary units or sub-populations, and from these a sample is taken. From each of 
these sampled sub-populations a secondary sample, or sub-sample is taken. 
 
The least useful and most subject to bias of all sampling procedures, accidental sampling, 
involves using what is available and most convenient as a sample pool. 
 
Some of the difficulties in compiling historical battle samples have already been discussed 
above. A number of such data compilations were aggregated and used by Hartley. The 
component databases were put together by different workers for a variety of different 
purposes. The aggregate database covers a wide range of force ratios and while emphasising 
20th Century battles, has reasonable coverage back to 1600. It emphasises land battles, but 
includes one air campaign. Hartley argued that the individual datasets comprising the 
database produce a random sample upon aggregation, because they were independently 
derived. This argument is similar to the inverse of Bootstrap sampling [23], which has been 
used to improve the accuracy of measures of sample statistical descriptors. Aggregation will 
improve the accuracy of statistical estimators, but does not affect bias. It is difficult to avoid 
the conclusion that Hartley’s database is little more than an aggregate of accidental sample 
databases. 
 
All battle databases are the product of the recursive application of the sub-sampling process. 
The population consists of all battles. This is first sampled to produce the set of all recorded 
battles. Many, especially smaller engagements, are never recorded. The requirement that both 
the initial and final values of forces strengths are known produces another sub-sampling stage 
to generate the set of all recorded battles with usable data. This sampling process also 
discriminates against smaller battles. Larger battles receive more attention and hence are more 
likely to have their attributes recorded. All battle databases are themselves samples of that 
sample. Even if the final sampling process was random, the process of recording history 
generates an intrinsic bias towards larger battles. This bias cannot be eliminated and any 
analysis technique must include procedures for identifying and dealing with that bias. 
 
Hartley looked for the effects of bias in his data compilation by dividing it into a series of 
partitions using criteria such as date, size, attacker/defender identity as well as campaign and 
original data source. Given that each of Hartley’s data sources included a different spread of 
such values, each partition produced a different sub-sample of battles. Trends that were 
observed in the value of a sample estimator in a partition would indicate the presence of a 
correlation between the value of the parameter defining that partition and the probability of 
being included in the sample. That estimator would then be subject to bias. Hartley’s analysis 
was primarily concerned with the behaviour of Equation 4 between the data partitions. He did 
not observe any significant differences, all observations being comparable to the estimated 
error, leading to the conclusion that the bias would not have measurable effects for his 
conclusions. 
 
However, bias was observed by the author on examining the number of battles of particular 
sizes in the database [7]. How the way in which history is recorded leads to an inherent bias in 
such compilations has already been described. Each analysis technique must include 
procedures for identifying and dealing with that bias. Given this requirement for dealing with 
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bias, it is more important to establish consistency in the analysis from different data 
compilations. Consistency in the results from analysis of different databases, established using 
different methodologies and different primary sources, is an indication that bias in addition to 
the inherent historical bias above has little effect. 
 
3.5 Historical Database Instantiation 

Both Helmbold and Hartley sourced their data primarily from research undertaken in the first 
half of the Twentieth Century. Both compilations recorded significantly more information 
than just initial and final strengths. By restricting the data compilation undertaken for the 
present work to just the initial and final strengths increases the number of battles for which 
suitable data has been recorded. Moreover, in the last quarter of the Twentieth Century, 
significant amounts of new research has become readily available. A number of different 
factors has led to this increase, changed conditions in Europe has enabled researchers to access 
sources previously little explored, especially in Eastern Europe. Popular interest in military 
history has led to more detailed scrutiny of archives, enabling earlier work to be reviewed and 
long forgotten sources to be rediscovered. Although it is important to guard against 
revisionist tendencies among historians with a particular agenda to pursue2. 
 
The present work has developed a compilation of historical battle data, building on Hartley’s 
compilation, using these advantages. This has enabled the number of battles included to 
increase from around 750 to around 1600. Each battle was checked against the most recent 
available data and earlier inaccuracies have been corrected. Previously, where some data was 
disputed, the battle had been included in the database multiple times with each entry 
corresponding to a different interpretation, such as when the winning side was disputed. 
More recent research has enabled most of these discrepancies to be resolved, and each battle 
now corresponds to a single entry. Where sources disagreed, the consensus opinion or values 
were followed. The internet has provided a means to facilitate large scale collaborative 
research on a scale not previously possible. Comprehensive archives, especially for subjects of 
popular interest such as the American Civil War [24] and Napoleonic Wars [25], have been 
produced by collaboration between enthusiasts and professionals using primary and 
secondary sources. Each entry in the database developed in the present work results from 
many sources and opinions3. This process is sometimes known as the “Wisdom of Crowds” 
[26] and is analogous to the process of Bootstrap sampling [23], with its resultant 
improvement in accuracy. 
 
The availability of more sources, both primary and secondary, from both combatant and third 
party observers has enabled wider views on the progress and outcome of battles to be heard. 
While not preventing bias, which still occurs, the availability of alternate opinions mitigates 
against much possible bias in recent battle analyses. 
 
The presence of service and support troops play an important part in the capacity of combat 
troops to engage in and sustain combat. Their contribution is sufficient to justify their 

                                                      
2 Such as those seeking to restore Hans Delbruck’s agenda or rehabilitate the reputation of Gen. D. Haig. 
3 For an example of the detail now available for an increasing number of battles see: “1805: Austerlitz” by R. 
Goetz, Greenhill Books, London, 2005. 
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inclusion in battle strengths, where listed separately. While this has been done for service 
troops in direct support of a particular battle, service troops in a more general support role, 
possible supporting several battles have not been included and in general their numbers are 
not known reliably anyway. 
 
Where separately reported, prisoner numbers have not been included in casualty 
determination. When small, this represents at most a small error in the combat impact of 
losses. When large, the prisoners generally resulted from actions undertaken after the 
cessation of major combat and did not influence the outcome. This also applies to other non-
combat casualties and is the reason for the exclusion of most sieges from consideration. The 
exception here is when the siege ended as the result of a single assault. 
 
The most appropriate representation of a force’s combat strength is to record the strength of 
each type of combat participant and develop separate attrition expressions for their 
interactions. Heterogeneous attrition models involve many interactions and the resulting 
combinatorial “explosion” greatly increases their complexity, which also reduces their utility 
and comprehension. Furthermore, historical data rarely includes detailed force compositions 
leading to considerable uncertainty in estimated values. A common way to reduce the 
attrition model’s complexity is to construct a homogenous force strength determined using 
some form of force scoring methodology such as QJM. However, the effects of uncertainty in 
the composition of the force still remains. Indeed, given that a comprehensive historical 
database must include the effects of a wide range of weapons with considerable differences in 
lethality (comparing a spear with a modern Main Battle Tank for example), the likelihood 
exists that the resulting relative force strengths may be little more than an artefact of the force 
scoring methodology. It is not clear that such methods, at least for the purposes of the present 
work, are any more reliable than a simple comparison of the number of participants, which 
was the method chosen for this database development. 
 
The decision as to what comprises a single battle, its boundary in space and time, is a decision 
that must be taken separately for each battle after considering the battle narrative. Each battle 
was selected for inclusion in an attempt to only consider battles that were thought to 
constitute a single engagement in terms of Lanchester’s original conception. The timing and 
availability of reserves also affected this decision as well as the force size. 
 
As mentioned previously, the bias introduced by the process of recording history is intrinsic 
and must be allowed for in subsequent analysis. If no suitable reason for choosing one source 
over another existed, the author made a judgement call on which version would be used. 
While this is unlikely to be always correct, it is at least self-consistent in the presentation of 
data. 
 
The data recorded for each battle included its identifying name and year, as well as a generic 
identifier describing the conflict and technology/tactics employed to facilitate segmentation of 
the database into groups of roughly similar battles. For both sides of the battle the initial and 
final strengths are recorded as well as that side’s principal posture (attacker, defender) and its 
final status (winner, loser). A summary of which appears in the following table. 
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Table 1: Dataset Segmentation and Summary 

Data-segment 
Epoch 

Start 
Year 

End 
Year 

Number of 
Battles 

Attacker 
Victories 

Defender 
Victories 

Ancient -490 1598 63 36 27 
17th Century 1600 1692 93 67 26 
18th Century 1700 1798 147 100 47 
Revolution 1792 1800 238 168 70 
Empire 1805 1815 327 203 124 
ACW 1861 1865 143 75 68 
19th Century 1803 1905 126 81 45 
WWI 1914 1918 129 83 46 
WWII 1920 1945 233 165 68 
Korea 1950 1950 20 20 0 
Post WWII 1950 2008 118 86 32 

 
 

4. Comparison with Previous Work 

The population of all battles throughout history cannot be documented. Recorded history is 
only a sample of those events that took place, and as already described, that sample is 
fundamentally biased and accidental in nature. Random sub-sampling of those recorded 
events does not change this basic property of the resulting sample. However, if different 
methodologies for sub-sampling produce consistent results then the observed patterns of 
behaviour can be considered as indicative of behaviour in the source sample and not artefacts 
of the sub-sampling process. In particular, if analysis of the data gives the same results, both 
before and after the effects of bias in the data has been addressed, the result can be considered 
as insensitive to the effect of bias and indicative of actual behaviour in recorded history. 
Comparison of the behaviour of the database developed in the present work with Hartley’s 
database provides this consistency check. 
 
Not all of Hartley’s approaches to segmenting his database have been examined here. 
Attacker/ Defender pairs were not examined as they contain too few data points to provide 
worthwhile analysis. The effect of outliers was not considered. This study examines the 
distributions of many results around their mean values. Whether a datum is an outlier or an 
instance of an extreme (low probability) event will have a strong effect on the tail of the 
resulting distribution. Bias could be introduced by arbitrarily removing data points from 
consideration based on perceived differences in behaviour, when such data points may be 
useful in illustrating dependencies. 
 
Equation 4 describes the key relationship to be used for comparison of Hartley’s work, Figure 
1, with the database developed in the present work. The analogous results for the current 
database are shown in Figure 2. 
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Figure 2: Helmbold’s Relationship using the current database. Attacker victories are coloured red 

while defender victories are green. 

Least squares regression generated the best fit lines shown. The dashed line represents the full 
data set with solid lines representing the data segmented by the victor’s posture. Equations 
describing the best fit lines for attacker victories and defender victories are also shown. 
Attacker victories are common for data both above and below the overall best fit line (dashed) 
describing the average battle outcome, while defender victories occur predominantly above 
that line. Attackers initially hold the initiative in battle, in that they can choose whether to 
attack or not. If their assessment of the likelihood of success is not favourable they will 
generally choose not to attack, which may explain the difference between attacker and 
defender successes shown in Figure 2. 
 
The gradient  in Equation 4 is the principal parameter characterising the behaviour of the 
datasets. It determines how sensitive a battle’s outcome (specified by the Helmbold Ratio) is 
to changes in the initial force ratio. If  has a dependence on force size (not ratio), technology 
(spears versus machine guns), winner’s posture (attacker/defender) or another significant 
discriminating factor between battles, then analysis of this dataset would be subject to bias. If 
 does not exhibit such behaviour, the results drawn from such analysis can be considered as 
insensitive to such effects. 
 
The regression parameters obtained for the dataset as a whole, and for the dataset segmented 
according to the victor’s posture as well as the battle’s epoch are given in Table 2 below. The 
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value for , the standard error in , the regression coefficient of determination and the 
maximum and minimum values for  using a 95% confidence interval are given for each 
dataset. Values for Hartley’s database are also given for comparison. The Korea epoch 
contained too few entries to undertake this analysis and was not considered. 
 

Table 2: Dataset Segmentation Regression Parameters 

Dataset  err R2 min  max  
Unsegmented      
Hartley’s Database 1.38 0.06 0.41 1.26 1.50 
Current Database 1.44 0.04 0.43 1.36 1.52 
Segmented by Posture      

Attacker Victories 1.55 0.04 0.58 1.46 1.62 
Defender Victories 1.42 0.06 0.51 1.30 1.53 

Segmented by Epoch      
Ancient 2.48 0.34 0.49 1.80 3.16 
17th Century 1.62 0.34 0.20 0.94 2.30 
18th Century 1.47 0.12 0.50 1.23 1.72 
Revolution 1.30 0.11 0.36 1.07 1.53 
Empire 1.27 0.10 0.32 1.07 1.47 
ACW 1.02 0.15 0.25 0.72 1.31 
19th Century 1.82 0.12 0.66 1.59 2.06 
WWI 1.22 0.11 0.48 1.00 1.44 
WWII 1.20 0.11 0.35 0.99 1.42 
Post WWII 1.63 0.10 0.67 1.41 1.84 

 
The current database values for maximum and minimum , as well as those segmented by 
posture, define an overlap in the region 1.46 to 1.52. This common region is also consistent 
with Hartley’s results. More variation in the value of  is observed between each epoch. If, for 
the moment, the values from the Ancient and American Civil War (ACW) epochs are ignored 
as outliers, examination of the values for maximum and minimum  again show a good 
overlap, although not as good as when segmented by posture. 
 
The agreement in the values of  observed in Table 2 is as good as that found by Hartley. 
Within a 95% confidence interval the possibility that a single value for  characterises each of 
these datasets cannot be discounted. The observed values of  may then be regarded as 
indicative of its value in the overall population and not an artefact of the sampling process. 
 
The low values for the coefficient of determination are also significant. One standard 
interpretation of this value is the fraction of the observed variation in the natural logarithm 
(ln) of the Helmbold Ratio that can be explained by the variation in the value of the ln of the 
Force Ratio. The small values indicate that other factors are responsible for most of the 
observed variation. A possible interpretation of this variation will be explored in a later 
section. 
 
Explanation of the value for  observed for the Ancient epoch requires closer examination. 
The value of the Helmbold Ratio is shown plotted against its corresponding Force Ratio in 
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Figure 3, segmented by the victor’s posture. Least squares regression generated the best fit 
lines shown. The dashed line represents the full epoch data with solid lines representing the 
data segmented by the victor’s posture. The observed value of  for attacker victories is 
similar to that observed for defender victories. Both values of which are significantly lower 
than the 2.48 reported for the epoch as a whole. Against expectation, in this dataset attacker 
victories are more common for lower Force Ratio values while defender victories are more 
common at higher Force Ratio values. Regression of the dataset as a whole has correlated 
these low Force Ratio attacker wins with the high Force Ratio defender wins, resulting in the 
large observed value of . This effect occurs to some degree in all epoch data segments, but is 
more pronounced here due to the large vertical separation between the attacker and defender 
sub-sets. A similar conclusion can be drawn for the ACW epoch. 
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Figure 3: Helmbold’s Relationship for Ancient Epoch battles. Attacker victories are coloured red 

while defender victories are green. 

In most of the analyses in the present work, attacker and defender values will be separated to 
prevent this form of aliasing biasing the results. 
 
It is important to determine whether any systematic trends in the value of  exist. A trend 
over time (and hence possibly of technology) can be examined using the data from Table 1 
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above. To enable comparison with Hartley’s examination of this trend, the data was not 
segmented by the winner’s posture. Ignoring the Ancient epoch (outlier), a year representative 
of each epoch was found by determining the average year for all battles constituting the 
epoch. The value of observed  plotted against its representative year is shown in Figure 4. 
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Figure 4: The value of the gradient  against representative year. Current database values are 
coloured orange and Hartley’s values are coloured blue. 

It can be immediately noted that Hartley’s values are consistent with the data from Table 2. 
The small values for the coefficient of determination indicates that the systematic changes in  
over time are not significantly different from zero. More importantly, this means that changes 
related to time (such as technology) do not have a significant impact on the outcome of battles. 
 
A trend in  with battle size would also be significant. It is a little more difficult to quantify as 
size can be determined in a number of ways. Most workers define the size of a battle as the 
total of all forces involved in the battle (both sides). This can be misleading as Helmbold [4] 
reported that the attacker’s strength is not strongly correlated with the defender’s strength. 
For small and mid-sized battles (up to 40000 per side), the correlation between the strengths of 
the two sides is poor, as can be seen in Figure 5. Using the total strength as a measure of size 
can then mask trends that depend on a side’s strength. 
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Figure 5: The Defender’s initial strength as a function of the Attacker’s initial strength. Attacker 

victories are coloured red while defender victories are green. 

Two different means of quantifying battle size were examined: the size of the attacking force 
and the size of the defending force. Dividing the 1083 battles for which the attacker was 
victorious into quartiles using these factors enables a comparison of the value of , 
determined from regression analysis in each quartile, for different sized battles. The results 
are given in Table 3. 
 
Table 3: Measurement of Attacker Victories’  by battle size Quartiles 

 Data Ordered By: 
Defender’s Strength Attacker’s Strength Quartile 

 err  err 
1 1.53 0.08 1.56 0.08 
2 1.60 0.09 1.50 0.08 
3 1.73 0.09 1.24 0.09 
4 1.91 0.07 1.59 0.07 

 
Clearly  does not depend on battle size when determined by the attacker’s force size, but 
does depend on battle size when determined by defender’s force size. This complex 
dependency on battle size was not observed by Hartley, who classified battles using total 
strengths involved. 
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Given the unequal range of battle sizes in each quartile, it is informative to consider the 
dependence of  on actual battle size. The average battle size for each quartile was taken as 
representative of that quartile. These results are shown in Figure 6. 
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Figure 6: The value of the gradient  against Battle Size. Battle sizes determined by Attacker size are 
coloured orange and by Defender size are coloured blue. Standard error bar sizes are shown 
for all points. 

A logarithmic dependence for  on defender’s size is observed. Logarithmic dependences on 
battle size have been observed in many parameters related to combat [4]. A possible 
explanation for the observed behaviour can be found on further consideration of the 
Lanchester’s Equations used in this analysis, Equation 3, in which the rates of change are 
determined by a single term. If however, the attrition rates are governed by a “mixed law” 
Lanchester Equation [12] with a polynomial strength dependence such as: 
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       (5) 

 
the residual behaviour of the non-linear terms could result in an apparent dependence of the 
coefficient  on force strength as observed. The effect of such terms have been considered by 
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Woodcock and Dockery [27] in their examination of the use of Catastrophe Theory for combat 
modelling. 
 
Catastrophe Theory is a method for examining non-linear dynamics where the potential 
function describing the system’s evolution is treated as a folded manifold [28]. Such manifolds 
allow multiple input values, for some parameter, for the same output value over a restricted 
domain. The potential function defining the manifold is obtained from the dynamics of the 
system under study. Catastrophe Theory analyses degenerate critical points of the potential 
function where not just the first derivative, but one or more higher derivatives, of the potential 
function are also zero. These are called the germs of the catastrophe geometries. The 
degeneracy of these critical points can be examined by expanding the potential function as a 
power series in small perturbations of its parameters. There are nine basic catastrophe types. 
 
The major problem for the application of Catastrophe Theory to combat is in the definition of 
the manifold potential. Current theories of combat are only able to produce part of the germ 
for any of the basic catastrophe types. Unfortunately, the terms in the germ that had no 
mechanism to support their inclusion are critical for the catastrophe behaviour. Catastrophe 
Theory was not considered further in the present work. 
 
This completes the comparison of results using the database developed for the present work 
with previous results. It should be clear that the results presented above are consistent with 
Hartley’s findings. The lack of variation observed in the value of the coefficient , using 
different methods to segment the database, supports the conclusion that the bias inherent in 
historical data does not produce an observable effect in the analyses. Therefore, the database 
may be taken as representative of the real world and not merely as an artefact of the sampling 
methodology. 
 
 

5. Stochastic Forms of Lanchester’s Equations 

Put simply, a stochastic process is described by a variable whose value changes in time in an 
unpredictable way. Such processes can be discrete, when the variable’s value can only change 
at specified fixed points, or continuous when the value can change at any time. Stochastic 
processes may also take continuous values, when the underlying variable can take any value 
within a specified range, or discrete values where only certain specified values are allowed. 
 
A Markov process is a particular type of stochastic process where only the current value of a 
variable is relevant for predicting its future evolution. A continuous time, discrete value 
Markov process has been demonstrated to produce a stochastic attrition model analogous to 
Lanchester’s deterministic equations [29]. Most modern combat simulations use Markov 
processes to describe attrition. The stochastic theory of attrition has been comprehensively 
explored by a number of workers and is readily accessible [29].  
 
Stochastic analogues of Lanchester’s Equations are a specific case of the stochastic linear 
system of equations for two stochastic variables: 
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    (6) 

 
where A and B are functions of the stochastic variables x and y, and possibly also of time t, 
that describe the regular and stochastic evolution of x and y. The functions S1 and S2 describe 
the magnitude of the stochastic variance in x and y resulting from the action of the stochastic 
functions z1 and z2. The form of z1 and z2 depends on the type of stochastic process being 
investigated. Normal probability distributions are generally used for continuous stochastic 
variables where the law of large numbers is assumed to hold. Although continuous variables 
are only an approximation, the difference between adjacent allowed values of the force 
strength variables is much smaller than the magnitude of the strengths themselves. As such, 
this will be the only case considered in the present work. 
 
Following the approach of Black and Scholes [32], stochastic analogues of Lanchester’s Square 
Law are obtained when linear dependences on the complementary variables are used in 
Equation 6. This substitution produces Equation 7, which is the same as the system studied by 
Amacher and Mandallaz (their Equation 6): 
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     (7) 

 
Most studies of the application of stochastic forms of Lanchester’s Equations have tended to 
emphasise its Markov process properties [11, 12]4. The present work will examine the 
relationship between observed behaviours and the parameters defining this stochastic system 
separately. It is not proposed to provide comprehensive or rigorous coverage of the methods 
of stochastic calculus or their application to the study of analogues to Lanchester’s Equations. 
A rigorous treatment of stochastic calculus theory can be found in the book by Klebaner [30] 
and its specific application to solution of attrition equations in the work of Amacher and 
Mandallaz [31]. Using a matrix formulation of the system, they developed an analytic general 
solution for the expectation values of the stochastic variables (actually the square of the 
stochastic variables) in the form of an infinite series product of matrices. Interestingly, they 
chose not to report any further analytic investigations into the behaviour of the system, 
preferring instead to examine their solutions numerically with  an examination of synthetic 
data obtained through simulation of the behaviour of the dynamical system. The same 
starting conditions were used and the results of 1000 runs of the system were studied. Their 
conclusions are interesting. Battle duration had a highly skew distribution, to the extent that 
mean battle duration was found not to be a useful summary statistic. Significant departures 
from a normal distribution were observed for casualty values. They considered this 
surprising, which is in itself surprising since the emergence of a log-normal distribution for 
casualties is a clear consequence of the model. The outcomes of the simulations were found to 
be sensitive to small variations in the initial conditions. A key conclusion of their work was 
the importance of battle termination conditions for the simulation’s outcome. In short, the 

                                                      
4 By which is meant an examination of the behaviour resulting from the stochastic nature of Equation 7 
without separating the effects resulting from the mean and variance terms inside the brackets of Equation 7. 
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general solution while interesting, is not particularly useful. This pioneering work does not 
appear to have been followed up. 
 
Previous work by the author [7] also examined solutions to stochastic forms of Lanchester’s 
Equations (Equation 7). In contrast to Amacher and Mandallaz, a general solution was not 
sought, instead focussing on solution of approximations to the equations themselves. This 
enabled the functional form of the force strength variables to be more easily identified and 
compared with historical data using the same approach as that outlined in the present work. 
A log-normal distribution for casualty values was found which was consistent with the 
expectation of the approximated equations and that observed by Amacher and Mandallaz 
[31]. A further difference between Amacher and Mandallaz and the author’s work is in the 
interpretation given to the origin of the stochastic term in Equation 7, which they regarded as 
merely the result of time dependent random disturbances of the attrition processes. The 
author’s previous work has attempted an interpretation of this contribution and shown how it 
can arise from interactions between the “system” of forces in combat and the remaining non-
combat processes affecting those forces. 
 
5.1 Ito’s Change of Variable Method 

A standard approach in stochastic calculus is to employ a change of variable method, 
commonly ascribed to Ito, to explore the evolution of quantities defined from the system’s 
stochastic variables [30]. This approach is essentially the same as that used by Fowler [12] who 
used the Fokker-Planck equation to examine the transition probability density in his 
formulation of stochastic attrition. This approach has also been used to derive the Black-
Scholes differential equation [32]. 
 
Let f = f(x,y,t) be a function of two stochastic variables and time such that f is twice 
differentiable in x and y and also once differentiable in t. Following Navin’s [30] informal 
approach to the development of Ito’s lemma: 
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This expression can be simplified, if the relationships between the dynamical variables are 
known, by substituting the first and second order differentials into Equation 8. This rule can 
be applied to the examination of stochastic forms of Lanchester’s Equations by first limiting 
consideration to systems that are described by Equation 6. This provides the first order 
differential terms. Using simplified notation [30] (ignoring the delta functions), on taking the 
expectation values, the second order terms are similarly obtained. For example:  
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However, as , it can be shown [30] that: 0dt
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which gives: 
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Both the z1 and z2 terms from Equation 6 can then be replaced by dt, as the integrations over z1 
and z2 are independent except for the cross term, from which follows: 
 

2121 dzdzSSdxdy         (12) 

 
Which in the integral over the stochastic processes can be replaced by 
 

dtSSdxdy 21        (13) 

 
Where  is the correlation coefficient between the two stochastic processes which have an as 
yet unspecified degree of coherence. This allows Ito’s rule, Equation 8, to be written as: 
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for dynamical systems described by Equation 6. This expression can then be used to examine 
how any function f defined for the system under study changes over time. 
 
5.2 Further Application of the Change of Variable Method 

The relevant Ito change of variable rule is further simplified by explicit specification of the 
undefined functions of Equation 14. When the instantiation of the general linear system that is 
given in Equation 7 is considered, the change of variable rule applicable to the stochastic 
analogue of Lanchester’s Square Law is obtained. 
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A number of quantities of interest for the Lanchester system with constant rate coefficients 
(Equation 7) were examined using this approach. All but one failed to produce any 
relationship of interest. Consider again the modified equation of state known as the Helmbold 
Equation: 
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The right hand side depends only on initial values and therefore is a constant. Hence df = 0. 
For this to hold true for all values of x, y and t, it must hold true separately for the component 
terms in both dt and dz after application of Equation 15 to the centre expression of Equation 
16. 
 
Considering the term for the dt component, an expression can be obtained which must be 
identically equal to zero in order that df = 0. After some rather lengthy algebra to simplify the 
expression, which the interested reader can find in Appendix A, the following relationship 
can be obtained that must also hold true in order that df = 0. 
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The functional relationship between the strengths for both sides can be more easily seen if X= 
x/xo and Y= y/yo. Then: 
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This relationship can be considered as a corollary to Helmbold’s Equation and will be 
examined using the historical database in a subsequent section. 
 
 

6. Analyses of the Distribution of Historical Data 

A cursory examination of the analysis of the historical database presented in Figures 1 to 3 
shows considerable scatter in the results around the mean values. Given the logarithmic scales 
employed, it is clear that the scatter in the results is as important for the relationship between 
dependent and independent variables as the underlying relationship between them of 
Equation 4. The pattern in the scatter of casualty results from the historical database has 
already been shown to be consistent with a log-normal distribution [7]. The observed log-
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normal distribution of casualties was expected on the basis of an approximate solution to 
stochastic forms of Lanchester’s Equations of Equation 7 and the observation that the 
historical data was predominantly from the region of the approximation’s validity. 
 
This section will examine the new expanded historical database for consistency with the 
results of the previous work and also expand the analysis of the patterns in the distributions 
in the results. The enlarged database now contains sufficient records to permit analysis of the 
distributions found from different segments of the overall database, and look for 
dependencies. It will also expand the examination to quantities other than those previously 
examined. 
 
Ordinary Least Squares Regression (LSR) was used in this analysis in preference to the 
currently popular Maximum Likelihood Estimation (MLE) method [33]. MLE is believed to be 
more robust in handling data that do not meet the requirements for rigorous LSR (normally 
distributed residuals etc). However, with data known to be affected by bias, LSR is generally 
more useful in being easier to understand and because of the availability of well-established 
diagnostic tools [34]. The use of residual plots in particular was extensively used in the 
present work to identify data affected by bias and adjust the analysis accordingly. 
 
6.1 Distribution of Initial Strengths 

Prior to an examination of the distribution of battle casualties, it is necessary to consider the 
distribution of initial strength values for evidence of the bias referred to in Section 3. 
 
The frequency distribution of initial force sizes was determined by dividing the range of force 
sizes into intervals of 10000 participants and counting the number of times a force strength 
from the database occurred in each interval. This is shown on a logarithmic scale in Figure 7. 
Noting the low correlation between the magnitude of attacker and defender force initial 
strengths (Figure 5), this distribution counts the initial strength of both sides separately rather 
than the combined forces total. Each battle therefore contributes two data points to the 
distribution. 
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Figure 7: Force Size Distribution, and regression coefficient of determination 

For the analysis presented in Figure 7, examination of the residuals confirmed the effect of 
small battle under-representation had biased the smallest data value. The difference between 
the observed value and expected value can be used to compensate for bias in the cumulative 
number distributions in the following analysis. The discrete nature of the dependent variable 
defines the measurement resolution. Where the value being measured is of the same size as 
the measurement resolution, the results can be strongly affected by fluctuations. Residual 
plots also identified which data is affected by fluctuations. In Figure 7 this corresponds 
roughly to the region where the logarithm of the Force Initial Strength is greater than 12, 
which could then be ignored by the regression analysis. The regression line (and coefficient of 
regression) shown in Figure 7 was produced after excluding those data points subject to bias 
and fluctuations. 
 
It should also be noted that the distribution of initial force sizes does not exhibit any 
indication of the influence of a normal distribution. The completely different behaviour of the 
initial strength frequency and the casualty frequency supports the contention that such 
behaviour results from the attrition process and is not an artefact of the sampling or analysis 
procedure. 
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6.2 Distribution of Casualties 

The distribution of the natural logarithm of each side’s battle casualties was determined by 
dividing the range of observed logarithm of casualty values into intervals of size 1, which is 
equivalent to the size for adjacent intervals having a ratio of 1.65. It results in an even spread 
of casualty values on a logarithmic scale which is necessary for the accurate representation of 
its distribution. The number of times the logarithm of the casualty value from the database 
occurred in each interval was then counted. This is shown in Figure 8. 
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Figure 8: Number Distribution of Battles, Cumulative Distribution of Such Battles, and Theoretical 

Cumulative Normal Distribution vs. ln(Casualties) 

The frequency distribution forms a bell shaped curve, but with considerable stochastic 
variability across the peak. This limits the ability to determine what form the distribution 
takes, in particular whether it is consistent with a normal distribution. The cumulative 
casualty distribution was formed by summing the number of occurrences with casualties 
greater than the specified value and is also shown in Figure 8. The cumulative distribution for 
occurrences greater than the specified value was chosen as it confines the effect of data bias to 
a few entries at the lower end of the scale instead of incorporating the bias in all the data 
points. 
 
The previous section has established that a bias in favour of larger battles in the historical 
record does indeed exist. This bias can be allowed for by calculating the theoretical curve that 
the distribution would follow assuming a normal distribution with the mean and standard 
deviation of the historical data, but using the results from Figure 7 to estimate the number of 
small battles “missing” from the database. Figure 8 also shows this theoretical cumulative 
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frequency distribution. This analysis counts the casualties of both sides separately rather than 
the combined total. Each battle therefore contributes two data points to the distribution. 
 
Ignoring the lowest strata of data, where bias is expected to produce under-representation, the 
close agreement between the historical data cumulative probability distribution and the 
expected theoretical probability distribution is apparent, as in the previous work. Ignoring the 
data points affected by bias, the correlation coefficient between the observed and theoretical 
distribution was evaluated as 0.997. These results are again consistent with the expectation of 
the proposed stochastic forms of Lanchester’s Equations. 
 
The database size used in the previous work and the prodigious amount of data required to 
undertake frequency analysis with any degree of reliability, limited that study to examination 
of the data as a single coherent sample. The larger size of the current database permits 
frequency analysis to be undertaken, with some degree of confidence, when the database is 
segmented according to the side’s posture and size of the battle. 
 
6.2.1 Segmented by Posture 

The above analysis procedure was also applied to only the casualties of the attacking force 
from each battle in the database, the results of which are shown in Figure 9. The number of 
battles in the sample is of course half that obtained from Figure 7, as each battle previously 
contributed two casualty values (one attacker and one defender). 
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Figure 9: Number Distribution of Battles, Cumulative Distribution of Such Battles, and Theoretical 

Cumulative Normal Distribution vs. ln(Casualties) for the attacking side. 
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A similar conclusion can be drawn regarding the behaviour of the casualty distribution for the 
attacking side, again consistent with the expectation of the stochastic forms of Lanchester’s 
Equations. Repeating this procedure using only casualties for the defending side yields similar 
results. 
 
6.2.2 Segmented by Outcome 

A similar analysis can be undertaken when the data is segmented according to the battle’s 
outcome and the casualty distributions of the winning and losing sides determined. Results 
very similar to those of Figure 9 were obtained for both sides and were consistent with the 
expectation of the stochastic forms of Lanchester’s Equations. It is more interesting, however, 
to compare the observed distribution for the winning and the losing sides which are shown in 
Figure 10. 
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Figure 10: Number Distribution of Battles vs. ln(Casualties). Winner casualties are coloured red while 

loser casualties are green. 

The two casualty distributions are similar, but that for the loser has larger values for both the 
mean and variance than that for the winners. The difference in mean values is statistically 
significant. Examination of battle narratives may provide an explanation that does not imply 
greater rates of attrition. In particular, the inclusion of prisoners in the casualty values affects 
the loser more than the winner. While prisoners are an important component of casualties, 
especially in the determination of combat end points, they do not result from attrition. The 
losing side may also be subjected to pursuit and desertion, both of which affect the loser more 
than the winner. An effort was made during database construction not to include prisoners 
taken after combat in the reported casualty values, however prisoners taken during combat 

UNCLASSIFIED 
31 



UNCLASSIFIED 
DSTO-TR-2643 

cannot be easily separated from the casualties due to attrition in most of the data. All of which 
produces higher casualty values for the loser without the need to invoke a larger attrition rate. 
 
While the difference between the mean values of the distributions are statistically significant, 
the difference between the variances is small enough that a 90% confidence limit cannot 
regard them as representing different distributions. Solutions to the stochastic differential 
equations [31] show that the mean value depends on both the systematic and stochastic 
contributions and hence on attrition rates, while the variance depends only on the stochastic 
part. These observations are consistent with stochastic processes acting evenly on both sides of 
a battle. 
 
6.2.3 Segmented by Force Size 

Examination of any dependence for the distribution of casualties on the size of the force was 
straightforward and just required the casualty values to be ordered according to its side’s 
initial strength. Forces with the same initial strength but different casualty values were 
ordered according by the casualty value. The casualty values were then divided into quartiles, 
based on this ordering by force initial size. The use of quartiles to specify force size was 
necessary to ensure enough data was available to determine the casualty distribution with a 
degree of reliability. Summary statistics for the results are given below. 
 
Table 4: Summary Statistics for ln(Casualties) using Force Initial Size Quartiles 

Quartile Mean Variance Standard 
Error 

Kurtosis Skewness 

1 5.28 2.31 0.05 -0.02 -0.39 
2 6.38 1.69 0.04 -0.30 -0.31 
3 7.05 1.70 0.05 -0.37 -0.25 
4 8.95 2.26 0.05 0.19 0.18 

 
The values for skewness and kurtosis are consistent with distributions close to normal, and 
hence log-normal for the casualty values. The change in sign for these quantities for the 4th 
Quartile (largest battles) may result from the inclusion of a small number of extremely large 
battles in the database. The resulting casualty distributions are shown in Figure 11. Further 
segmentation based on the side’s posture was not possible, as can be seen from the variability 
across the peak of the each of the distributions. 
 
Repeating the previous analysis for these results, indicates that the distributions are also 
consistent with the expectations of the stochastic attrition process. Mean casualty values 
increase with battle size (quartile) but the change in the variance is not statistically significant. 
The distribution variance depends on the magnitude of the stochastic contribution to the 
attrition rate in Equation 7 (1 and 2) is again seen to act evenly in all battles. 
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Figure 11: Number Distribution of Battles vs. ln(Casualties) for different initial size forces. 1st 

Quartile values are blue, 2nd Quartile are black, 3rd Quartile are purple and 4th Quartile is 
brown. 

6.3 Results Distributions in Helmbold’s Relationship 

Part of the motivation for the present work was to extend the examination of stochastic 
patterns in historical combat statistics beyond consideration of each side’s casualty behaviour. 
Equation 14 shows that any arbitrary function defined from the system’s stochastic variables 
should also exhibit stochastic behaviour. This should then be observable through examination 
of the frequency distribution of that function’s value using historical data. 
 
Section 5.2 examined the application of the differential rule of Equation 15 to the Helmbold 
Equation (Equation 4). However, analytic examination of the resulting expressions have 
yielded little of interest beyond the simple rule of Equation 18. Certainly, no clear indication 
of how the historical data (Figure 2) should be distributed about the mean value has been 
found. 
 
The frequency distribution of the Helmbold Ratio in Figure 2 about the line of best fit can be 
obtained by modifying the procedure used in the previous section. Two different approaches 
for segmenting the database were examined. The posture of the winning side was used in the 
initial investigation, after which the effect of the size of the Force Ratio on the distribution was 
considered. 
 
For each data point in Figure 2, the Force Ratio value was used to calculate an expected 
Helmbold Ratio using the line of best fit determined by regression analysis of the relevant 
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database segment. The value of the logarithm of the historical Helmbold Ratio minus the 
logarithm of the expected Helmbold Ratio is then calculated. The frequency distribution of 
these delta-ln-Helmbold-Ratio values is then determined using the procedure described in the 
previous section. Summary statistics for the number distributions using this database 
segmentation are given below with the distributions plotted in Figure 12. 
 
Table 5: Summary Statistics by winner’s postures of ln(Helmbold Ratio Distribution) 

Posture Mean Variance Standard 
Error 

Kurtosis Skewness 

All 0.00 1.89 0.03 0.86 0.01 
Attacker 0.00 1.25 0.03 0.72 -0.49 
Defender 0.00 1.15 0.05 2.32 0.54 

 
It is not clear whether the wide range of values for both the kurtosis and skewness is a result 
of the large fluctuations in the data or is indicative of underlying differences in the 
distributions. The analysis method is responsible for the mean values of zero. A normal 
distribution should have a kurtosis of 3 and a skewness of 0. The difference between the 
variances for attacker wins and defender wins is not statistically significant. The larger value 
for the variance observed for the entire database results from the offset between the regression 
lines for attacker wins and defender wins. 
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Figure 12: Helmbold Ratio number distribution. Attacker victories are coloured red while defender 

victories are green. Entire database is coloured black. 

While this data does not allow the form of the distribution to be confirmed, the observed 
distributions are not inconsistent with the behaviour expected from a normal distribution. 
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6.3.1 Segmented by Battle Size 

The size of the database limits the number of segments into which the data of Figure 2 can be 
split and still allow the distribution to be determined. Each data point in Figure 2 only 
contributes one value of the Helmbold Ratio, in contrast to two casualty values. Study of the 
dependence of the distribution of the Helmbold Ratio with battle size had to ignore the 
winner’s posture. The number of battles is not sufficient to allow division into quartiles of 
sufficient size to facilitate frequency analysis with reasonable accuracy. The maximum 
number of size divisions that could be used was three. Even then, the fluctuations across the 
distribution was larger than desired. The dependence of the Helmbold Ratio on the Force 
Ratio suggests that the magnitude of the Force Ratio should be used to quantify battle size. 
Summary statistics for this segmentation are given in Table 6 and the distributions are plotted 
in Figure 13. 
 
Table 6: Summary Statistics by battle size of ln(Helmbold Ratio Distribution) 

ln Force-Ratio delta ln-Helmbold-Ratio Battle Size 
Minimum Maximum Mean Variance Standard Error Kurtosis Skewness 

Lower -3.20 0.00 0.00 1.90 0.03 0.59 -0.09 
Middle 0.01 0.71 0.03 1.73 0.03 1.96 0.02 
Upper 0.72 3.66 -0.04 2.09 0.05 0.10 0.13 
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Figure 13: Helmbold Ratio number distribution dependence on Force Ratio magnitude. Lower third 

are coloured blue, middle third are coloured black and upper third are coloured purple. 
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The skewness and kurtosis show no definite trend with battle size as determined by the Force 
Ratio. The observed differences in the distributions are not statistically significant. The 
distribution of values for the Helmbold Ratio does not appear to depend on the Force Ratio in 
this analysis. This data does not allow the form of the distribution to be confirmed. However, 
the observed distributions are not inconsistent with the behaviour expected from a normal 
distribution. 
 
 

7. Predictions of Battle Outcomes 

Lanchester models of combat are generally considered to be capable of providing insight 
into a limited number of questions. The most important of which is ‘What conditions are 
required for success?’  (Who will win?) Helmbold [4] examined the correlation between 
the value of the Advantage parameter V and the battle’s outcome: 
 

 
  












 2
0

2
0

1

1
ln2ln

yy

xx
V        (19) 

 
where x denotes the attacker and y the defender in each battle. The advantage parameter has 
been used in most subsequent work, including Hartley [5]. This simple relationship, using 
only initial and final strengths, does not include non-attrition considerations. It is a stochastic 
measure of success where a negative value predicts the attacker will be successful and a 
positive value predicts a defender’s success. For this reason it is generally known as the 
Defender’s Advantage V. To date, no studies to determine whether there is any dependence of 
the probability that V successfully predicts the outcome on other factors, such as the battle’s 
size, appear to have been undertaken. 
 
Examination of the effect of battle size on the probability that V successfully predicts the 
outcome has proven difficult. As already discussed, battle size is difficult to quantify as it can 
be measured in a number of ways. Most workers define the size of a battle as the total of all 
forces involved in the battle (both sides). The present work has found trends when battle size 
is determined by the strength of specific single sides. However, consideration of any 
dependence of the probability that V successfully predicts the outcome on battle size has been 
deferred to subsequent work. 
 
The present work was only able to examine the historical database for any dependence on the 
winner’s posture and battle date. The value of the Defender’s Advantage and known battle 
outcome were used to determine the probability that the outcome was successfully predicted 
for each of the epochs (section 3.5) used in this database. This probability was determined for 
each epoch as a whole and also segmented by the posture of the winning side for each epoch. 
These results are listed in the following table. A date was assigned to the epoch by averaging 
the date for all battles constituting that sub-division. 
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Table 7: Probability that Defender’s Advantage predicted outcome successfully 

Dataset Representative 
Year 

Probability 
Defender 

successfully 
predicted 

Probability 
Attacker 

successfully 
predicted 

Probability 
All 

successfully 
predicted 

Ancient 900 0.95 0.88 0.90 
17th Century 1650 0.67 0.94 0.85 
18th Century 1745 0.71 0.91 0.83 
Revolution 1795 0.90 0.91 0.91 
Empire 1810 0.74 0.83 0.80 
ACW 1860 0.84 0.80 0.81 
19th Century 1865 0.67 0.85 0.78 
WWI 1915 0.74 0.87 0.82 
WWII 1945 0.56 0.81 0.74 
Post WWII 1980 0.62 0.80 0.77 

 
These results confirm that initial strengths and casualties are significant, if not dominant, 
determinants for successfully predicting battle outcomes. The results are also shown in Figure 
14. It is interesting to note that the Defender’s Advantage appears better at predicting overall 
attacker successes (0.85) than defender successes (0.73). This difference is statistically 
significant at the 95% confidence level. 
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Figure 14: Probability that the Defender’s Advantage correctly predicts the outcome segmented by 

epoch and posture. Attacker victories are coloured red while defender victories are green. 
Non-segmented data is coloured blue. 
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Figure 14 also includes straight line regression fits to the data. Little variation in the success 
rate of the advantage parameter with date, low values of the coefficient of determination, 
together with the lack of a systematic trend in the success rate of the advantage parameter is 
consistent with the independence of this parameter from date. This also implies that it does 
not depend on other quantities that correlate with date, such as the technology used in battle. 
There is one exception to this observation. 
 
The behaviour of the probability of the advantage parameter to successfully predict the 
battle’s outcome for all three cases considered is consistent up to around the year 1900. After 
that date the observed behaviour for attacker victories and for all battles remain consistent 
with each other and with their previous trend (consistent with no dependence on date). The 
behaviour for success in predicting defender victories, however, shows a noticeable change 
with the advantage parameter becoming much less successful at correctly predicting a 
defender victory. The change in the gradient of the lines of best fit between these two periods 
(pre-1900 and post-1900) is statistically significant, indicating that the observed reduction 
represents a real change in the contribution of attrition to the defender’s success. At present 
no explanation for this behaviour has been found. 
 
7.1 Combat Entropy 

In the early 1990s the use of Shannon entropy (S) to measure the disorder introduced as a 
result of combat attrition, where c is the number of casualties at time t and N the force strength 
at the same time was applied to combat [35]: 
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It was proposed that the difference in entropy between both sides would represent some 
measure of the outcome of the battle. This has subsequently been examined by a number of 
workers including Dexter [36], who found a good correlation between the entropy difference 
and battle outcome. The database used in that study was small (around 100 entries) and the 
criteria used for its construction are not clear, leaving unanswered questions about the impact 
of bias. Although better agreement was found using entropy than Lanchester predictions of 
victory (Defender’s Advantage), the possibility of bias could not be excluded. 
 
The ability of the entropy difference to correctly predict the outcome of a battle was also 
examined in the present work using the same methodology as for Defender’s Advantage. The 
results also show a correlation between entropy difference and combat outcome, with the 
same trends as reported above using the Defender’s Advantage parameter. For this reason, 
the results of the combat entropy study have not been reproduced. However, the present 
work found that combat-entropy was less effective in correctly predicting the outcome than 
the Defender’s Advantage, in contrast to Dexter’s conclusion [36]. 
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7.2 Examination of the Corollary to Helmbold’s Equation 

The application of Ito’s method to examine the differential of the Helmbold Ratio in section 
5.2 produced the relationship of Equation 17, where the ratio on the left-hand-side (hereafter 
called the End Ratio) should depend only on the initial Force Ratio. The End Ratio depends 
only on the initial and final force values and has similarities to the force dependent parts of 
the Defenders Advantage parameter of Equation 19. All of which suggests that the End Ratio 
may also be of use to distinguish between battles won by the attacker from battles won by the 
defender. 
 
The database developed for the present work can easily be used to examine this relationship, 
which is shown in Figure 15 using logarithmic scales along with the regression coefficient 
obtained from a least squares fit to each of the data segments. As usual, battles with attacker 
victories are coloured red while defender victories are coloured green.  
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Figure 15: Relationship between the End Ratio and initial Force Ratio. Attacker victories are coloured 

red while defender victories are green. 

Defender victories are seen to lie predominantly in the top half of Figure 15, with positive 
values for the logarithm of the End ratio, while attacker victories predominantly have 
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negative values for this parameter. The low values of the correlation coefficients obtained for 
each data segment, and shown in Figure 15, is consistent with no dependence of the End Ratio 
on the initial Force Ratio. The logarithm of the End Ratio does appear to differentiate between 
battles won by the attacker and battles won by the defender, with the value zero 
(corresponding to the End Ratio being unity) being the dividing line. The independence of the 
End Ratio from the Force Ratio is also consistent with the stochastic processes acting evenly 
on both sides of a battle. 
 
 

8. Battle as a Complex Adaptive System 

Lanchester’s attrition equations describe the evolution of a single battle in time. However, 
analysis of historical data has shown that many of the relationships derived from Lanchester’s 
Equations also describe the behaviour of the same parameters from such a collection of 
unrelated battles [4], [5], [6], [7]. Helmbold’s pioneering work [4] made the assumption that 
the attrition coefficients were approximately the same for all battles. Hartley [5] sought to 
relax this assumption and has examined this issue at length. Neither has proposed a possible 
mechanism for why this behaviour is observed. Section 3.3 deferred consideration of that 
issue to here. Consideration of why this might be the case, albeit following an empirical rather 
than mathematically rigorous approach, requires a brief review of those Complex Adaptive 
Systems concepts necessary for an understanding of scale free behaviour. 
 
The Lanchester Equations are a model for the behaviour of two interacting populations. Such 
dynamical systems (two interacting populations) are of considerable interest and have been 
widely studied. Another such system is the Lotka-Volterra model of predator-prey interacting 
populations, which has also been examined from a stochastic viewpoint [37]. This is of interest 
for the present work as it is widely believed to be an analogue for the Lanchester Equations. 
 
The state of such systems is typically described by its location in phase space. The phase space 
coordinates in this case being restricted to the magnitudes of the populations, which are 
sufficient to describe the system’s time dependence without the explicit inclusion of the rate of 
change as an additional coordinate. A defining characteristic of the Lotka-Volterra Equations 
is that their solutions encompass periodic behaviour. Put in other words, their phase space 
trajectories are closed curves, indicating that they describe conservative stable systems. (the 
same point in phase space can be revisited) This represents a significant difference to a system 
described by the Lanchester Equations. Such systems are fundamentally dissipative, their 
phase space trajectories have a point attractor with both force strengths equal to zero. The 
most useful properties of the Lotka-Volterra Equations therefore cannot be applied to the 
Lanchester Equations. This highlights the importance in understanding the general properties 
of dissipative systems to provide better insight into the dynamics of combat. Dissipative 
systems differ from conservative systems in a number of critical ways, the most important of 
which results from the reversible nature (at least in principle) of a conservative system 
compared with the fundamentally irreversible nature of a dissipative system. 
 
Reversible systems are typically closed or isolated from external influence, their evolution is 
described by the current value of their endogenous variables whose past history is irrelevant. 

UNCLASSIFIED 
40 



UNCLASSIFIED 
DSTO-TR-2643 

They can be treated as if they are in equilibrium, or at least can be described as quasi-static 
systems, in which the system follows a succession of equilibrium states and transitions 
between the states sufficiently slowly such that at each moment of time the system can be 
treated as if it were in equilibrium. This model of system dynamics has been widely applied 
since the time of Newton, and with considerable success [38]. However, during the 20th 
century there has been an increasing acceptance that a whole class of problems has been 
largely ignored, because they are not suited to examination by the techniques developed in 
the study of reversible systems. Many dissipative systems are poorly described using 
techniques developed for reversible systems. Just as classical thermodynamics was used as a 
model for many reversible systems [38], the recent (and ongoing) development of irreversible 
thermodynamics [39] is beginning to be seen as a starting place for more appropriate studies 
of other irreversible systems [40]. 
 
Irreversible systems, in contrast, are typically open or interacting with their environment, 
their evolution also requires knowledge of appropriate exogenous variables. The development 
of stochastic forms of Lanchester’s Equations being one approach to the inclusion of a model 
for that interaction into the theory of attrition. The past history of the system can be important 
for understanding its future development. If a system is reversible, its entropy does not 
change. Indeed, this can be used as a definition of a reversible process. Classical 
thermodynamics approximates real systems as the sum of closed quasi-static reversible and 
irreversible parts. The entropy of the irreversible part increases in accordance with the second 
law as the system evolves towards its equilibrium end-state, which consequently can be seen 
as the state with maximum entropy. This is a good description of the behaviour of closed 
systems. Many real systems are open in addition to being irreversible. The 1977 Nobel Prize 
for Chemistry was awarded in large part for demonstrating that such systems do not evolve to 
maximum entropy and equilibrium states [38]. Instead, they evolve to states for which the 
production of entropy is minimised, at least in the linear thermodynamics regime. This 
stationary state is maintained through its dynamic interaction with the environment, and 
allows the system to exist in a more structured condition than would be permitted at 
equilibrium. 
 
Equilibrium is the condition of maximum entropy, which is also the state of minimum 
information content. The ensemble of components forming the system have their individual 
states distributed according to the Boltzmann distribution [40]. In the large number (size) 
limit, this can be replaced by the Poisson (discrete) or Gaussian (continuous) probability 
distributions resulting from the corresponding random processes [41]. 
 
These probability distributions exhibit a flat spectral density5 (white noise) for variations 
about their mean values, which is also regarded as characteristic of random processes. 
 

S() = constant        (21) 
 
This is the case for closed or isolated systems at equilibrium or quasi-static equilibrium. As 
demonstrated above, open or interacting systems are not subject to the same constraints as 

                                                      
5 White noise is a random signal and its frequency spectrum is determined from the Fourier Transform of its 
probability distribution. In this case a constant. 
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equilibrium systems and may consequently exhibit different spectral densities in their 
behaviour. This is usually interpreted as equivalent to meaning non-equilibrium systems are 
not described by random behaviour. While this is a sufficient condition, it is not a necessary 
condition. 
 
The random processes underlying equilibrium behaviour all employ one key assumption, 
events occur independently of one another. When this does not hold, and there is partial 
correlation between events, the system contains additional information describing that 
correlation and white noise is no longer a description of the spectral density. 
 
However, this behaviour can still arise from a random process. Consider a fishing fleet of N 
boats where the captain of each boat makes a random choice whether to fish on any given day 
independently of the decisions of the other captains. This leads to a simple Poisson 
(equilibrium) distribution for the expected number of boats observed fishing per day. If the 
effect of weather (an exogenous variable) on the expected return for a day’s fishing is then 
added to this model, the probability that a boat will fish on a poor day will become less than 
the probability that it will fish on a good day. Each captain still makes the random decision to 
fish or not independently of the others, but the decisions are now correlated through the 
action of the weather in biasing the probability. This leads to a non-Poisson distribution of 
observed fishing boats and a spectral distribution that is frequency dependent, where the 
additional information content describes the pattern of the weather. This type of behaviour is 
commonly known as Self Organised Criticality. 
 
Many such systems are known in nature and exhibit a characteristic frequency dependent 
spectral distribution commonly known as Pink noise [40, 42]: 
 

s
S


 1

)(         (22) 

 
where the exponent is typically a real number  0 < s < 2. This is equivalent to a frequency 
dependent probability for the occurrence of system events. This type of system is known as 
scale free, because regardless of the size (scale) of the spectrum under investigation the same 
behaviour is observed (a small piece of the spectrum examined in detail or a much larger 
section examined more coarsely). The same phenomena producing the microscopic behaviour 
is also responsible for the macroscopic behaviour. Scale free behaviour has been observed in 
many different dynamical systems, ranging from the frequency of earthquakes [30] to traffic 
accidents [43]. 
 
A number of descriptions for the emergence of self-organised criticality have been proposed, 
associated with the observation of pink noise. They are frequently used as analogues for other 
complex systems exhibiting scale free behaviour. In systems that are not static but evolving, 
the Red Queen Principle (or co-evolution) has also been suggested as a mechanism behind 
self-organised criticality [44]. The Red Queen Principle [45] is based on the observation to 
Alice by the Red Queen in Lewis Carroll's "Through the Looking Glass" that "in this place it takes 
all the running you can do, to keep in the same place". If a number of dynamic systems coexist, the 
random variations introduced by evolution in one system can produce a competitive 
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advantage (increased fitness) for that system, and thus be able to capture a larger share of the 
resources available to all. This means that a fitness increase in one evolutionary system will 
tend to lead to a fitness decrease in another system. The only way that a system involved in a 
competition can maintain its fitness relative to the others is by in turn improving its design. In 
an evolutionary system, continuing development is needed in order to maintain its fitness 

lative to the systems it is co-evolving with. 

 process that should exhibit co-evolution and do 
how a scale free (power law) relationship. 

ting the evolution of a single battle with 
alues of  and β describing an “average” battle. 

re shown on logarithmic axes in Figure 18 along with a least 
quares regression to the data. 

 

re
 
A possible explanation of why the pattern of behaviour observed from an ensemble of 
different battles (Figure 1 and Figure 2) can be described using the behaviour expected within 
a battle (Equation 4) can now be attempted. This is an observation of scale free behaviour in 
which the same pattern of behaviour is observed at different scales of a phenomena. Stochastic 
forms of Lanchester’s Equations include a model for the effect of the wider environment 
(exogenous variables) on attrition [7]. Exogenous variables imply that combat is an open 
system which allows non-equilibrium states to be stable. An evolving non-equilibrium system 
can result in the co-evolution of system variables and the Red Queen effect. Such variables 
will exhibit a power law (pink noise) relationship. The cause of scale free behaviour in 
attrition can then be understood as a consequence of the Red Queen effect. All that remains is 
to identify quantities involved in the attrition
s
 
Dupuy [13] suggests an obvious co-evolution between weapon lethality and battlefield 
dispersion, although the data in that publication is not particularly suitable for quantitative 
study. The co-evolution can be explained using the following sequence of events. Side 1 
introduces (evolution) a more effective weapon or tactics, increasing the attrition coefficient of 
side 2. This changes the value of the values for the coefficients  and β in Equation 4 moving 
the battle data away from the line-of-best-fit. Side 2 can choose to respond (co-evolution) to this 
change by spreading its forces out. This reduces the number of targets available to side 1 and 
their rate of loss. The effective value of the attrition coefficient is also reduced which counters 
the previous changes in  and β, restoring the status-quo. The data from an ensemble of 
battles should then cluster about the line represen
v
 
Later work by Dupuy does include a limited amount of data to permit a preliminary 
investigation. Dispersion can be easily measured in terms of the number of troops per square 
kilometre. Lethality is more difficult to define, let alone measure. For an explanation of how 
lethality is defined and measured the interested reader is referred to Dupuy’s work [46]. The 
dispersion and lethality results a
s
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Figure 17: ln(Troop Density) as a Function of ln(Lethality) 

 
A power law relationship between lethality and dispersion is consistent with these results. 
This supports the contention that co-evolution is at work between quantities involved in 
attrition which acts to oppose any tendency for battle results to deviate consistently from the 
average. Scale free behaviour of some parameters should be expected, and is a possible 
explanation for the observed agreement in the behaviour of the historical ensemble of battles 
with the expectation of a single battle. 
 
 

9. Conclusions 

The present work has used two different approaches in its examination of the behaviour 
expected from a battle where attrition is described by Lanchester’s Equations. It is important 
to remember that Lanchester’s Equations are not a model of combat, only a model for combat 
attrition. The equations alone, therefore, cannot be expected to capture other effects such as 
the movement of engaged forces. Both methodologies can be regarded as empirical, rather 
than mathematically rigorous. 
 
The present work, while not mathematically rigorous, has applied a standard stochastic 
calculus method to find the equation that specifies the evolution of an arbitrary function in a 
system with two stochastic variables. Similar to the approach of Black and Scholes, this 
differential form was applied to a number of functions known to be of interest for the 
Lanchester Square Law system of equations. Application of this to Helmbold’s Ratio lead to 
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the discovery of a new construct, defined using both sides initial and final force strengths, that 
has proven able to differentiate between battles won the attacker and battles won by the 
defender. 
 
The second approach, which constituted the bulk of the present work, compared historical 
battle data to the behaviour expected from a battle where attrition is described by Lanchester’s 
Equations. This required a comprehensive examination of the issues, problems and constraints 
on using historical data for any form of analysis. It is an area often neglected by such studies. 
 
All battle compilations are the product of the recursive application of a data sampling process. 
The population consists of all battles. This is first sampled to produce the set of all recorded 
battles. Many, especially smaller engagements, are never recorded. The requirement that both 
the initial and final values of forces strengths are known produces another sub-sampling stage 
to generate the set of all recorded battles with usable data. This sampling process also 
discriminates against smaller battles. Larger battles receive more attention and hence are more 
likely to have their attributes recorded. All battle databases are themselves samples of that 
sample. Even if the final sampling process was random, the process of recording history 
generates an intrinsic bias towards larger battles. This bias cannot be eliminated and any 
analysis technique must include procedures for identifying and dealing with that bias. A 
method for the identification of the effect of bias was examined. If analysis of the data gives 
the same results, both before and after the effects of bias in the data has been addressed, the 
result can be considered as insensitive to the effect of bias and indicative of actual behaviour 
in recorded history. 
 
The present work, in considering a battle as the interaction between combat and non-combat 
quantities in a complex adaptive system has also shown how self-organised criticality can 
produce scale free behaviour (same pattern of behaviour at different scales of examination in 
the data). This is believed to be an explanation for the observation that the behaviour of the 
results from an ensemble of different battles can be described using that expected from the 
evolution of a single battle. 
 
The results of this study of the behaviour of the initial and final strengths for both sides from 
an ensemble of historical battles is consistent with the expectations of systems using the 
stochastic Lanchester Equations. Segmentation of the data base according to a number of 
parameters including the force’s initial strength and the posture of the winning side also yield 
results consistent with the stochastic Lanchester Equations. Importantly, the comparisons 
indicate that the stochastic parts of the attrition processes act evenly on both sides of the 
battle, regardless of how the database was segmented. 
 
The missing element of combat theory that rigorously links all the studies in the present work 
together is a theory of combat termination. No general or accepted theory for combat 
termination has to date been developed that agrees with the available historical results. This is 
clearly the major remaining problem in the development of a quantitative model of combat. 
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Appendix A:  Application of Ito’s Rule to Helmbold’s 
Relationship 

Let: 
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Given that: 
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The term in the first bracket (the dt term) can be found by substituting the differentials: 
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The first bracket in Equation A3 can be re-expressed as: 
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However, from the equation of state (main text Equation 2) which is consistent with the 
modified form of the equation of state in Equation A1 (see the discussion prior to Equation 4 
in the main text) shows that: 
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Hence the first bracket of Equation A3 is zero. Therefore: 
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Equation A5 can also be used to replace the  term in Equation A6, leaving: 22
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From which some elementary cross-multiplication produces the desired result: of Equation 17 
from the main text. 
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